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A B S T R A C T

Social withdrawal is a core component of the behavioral response to infection. This fact points to a deep
evolutionary and biologic relationship between the immune system and the social brain. Indeed, a large body of
literature supports such an intimate connection. In particular, immune activation during the perinatal period has
been shown to have long-lasting consequences for social behavior, but the neuroimmune mechanisms by which
this occurs are only partially understood. Microglia, the resident immune cells of the brain, influence the for-
mation of neural circuits by phagocytosing synaptic and cellular elements, as well as by releasing chemokines and
cytokines. Intriguingly, microbiota, especially those that reside within the gut, may also influence brain devel-
opment via the release of metabolites that travel to the brain, by influencing vagal nerve signaling, or by
modulating the host immune system. Here, I will review the work suggesting important roles for microglia and
microbiota in social circuit formation during development. I will then highlight avenues for future work in this
area, as well as technological advances that extend our capacity to ask mechanistic questions about the re-
lationships between microglia, microbiota, and the social brain.
1. Introduction

The immune system has long been known to influence social behavior
and the social brain (for review see Smith and Bilbo, 2021). Early studies
of the behavior of sick animals identified ‘sickness behavior’ as an
adaptive host response to infection that includes anorexia, lethargy, and
social withdrawal (Hart, 1988; Dantzer and Kelley, 2007). Social with-
drawal following infection has been observed across the evolutionary
continuum and while it may help to prevent disease transmission, it also
comes at a cost in that it reduces parental care and limits mate selection
(Shakhar and Shakhar, 2015). Animals, including humans, are also
capable of recognizing, and therefore avoiding, other individuals who are
sick (Kavaliers and Choleris, 2018; Arakawa et al., 2011; MacRae et al.,
2015; Lasselin et al., 2017). (see Fig. 1)

The above examples illustrate how the immune system modulates
social behavior during an acute immune challenge in adulthood. How-
ever, the immune system also plays a critical role in the developmental
organization of social circuits. Several studies have shown that immune
challenges during the perinatal period lead to long-lasting changes in
social behavior in rodent models. For example, maternal immune acti-
vation during pregnancy, postnatal injection of the bacterial mimetic
lipopolysaccharide (LPS), and other immune-activating exposures such
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as maternal high-fat diet have all been shown to alter adult social
behavior (Hsiao et al., 2013; Choi et al., 2016; Carlezon et al., 2019;
Buffington et al., 2016; Smith et al., 2020). Excitingly, emerging work
also suggests that neuroimmune interactions are critical to the develop-
ment of neural circuits in the healthy brain, but only a handful of studies
have explored this in the context of social circuits (Stevens and Schafer,
2018). Microglia, the resident immune cells of the brain, have stood out
as important players in this work, as they are capable of both responding
to immune challenges, and phagocytosing synapses and even whole cells
during development (Kopec et al., 2018; VanRyzin et al., 2019).

It is tempting to view all bacterial organisms as potentially pathogenic
invaders. However, in recent years, our microbiota – the commensal
bacteria that live alongside andwithin us - have gained recognition as
important, often beneficial, intermediaries between ourselves and our
environment. Indeed, microbes are required for the developmental ed-
ucation of our immune system, which, in turn, may impact brain devel-
opment (Zegarra-Ruiz et al., 2021; Filiano et al., 2016). This is likely to
be the case in the realm of social behavior. For example, germ-free mice,
who lack microbiota entirely, have abnormal social behavior (Desbonnet
et al., 2014; Buffington et al., 2016; Lu et al., 2018). Furthermore, early
studies suggest that the effects of immune challenges on social behavior
may depend on the composition of the gut microbiome (Kim et al., 2017),
021
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Fig. 1. Dr. Caroline J. Smith. Dr. Smith is a postdoctoral fellow in the lab of
Dr. Staci Bilbo at Duke University. She began her academic career as an un-
dergraduate student at the University of Massachusetts Amherst in the lab of Dr.
Nancy Forger studying the epigenetic mechanisms underlying sex differences in
the brain. She completed her PhD in the lab of Dr. Alexa Veenema at Boston
College. Her graduate research aimed to elucidate sex differences in the roles of
neuropeptides and endogenous opioids in the regulation of adolescent social
behavior and was supported by a fellowship from the National Science Foun-
dation. She is currently a postdoctoral fellow in the lab of Dr. Staci Bilbo at Duke
University where her work focuses on understanding how neuroimmune in-
teractions during development influence the organization of social circuits in the
brain and how this process is disrupted by a variety of perinatal immune chal-
lenges (such as environmental toxicants, stress, opioids, and bacterial mimetics).
This work is supported by a Ruth L. Kirschstein National Research Service
Award from the National Institute of Environmental Health Sciences. In the
future, she hopes to combine systems level circuit-based approaches and mo-
lecular/sequencing technologies to investigate the ways in which microglia and
the gut-brain axis sculpt the social brain in both males and females.
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and that intervening at the level of the microbiomemay ameliorate social
impairments in neurodevelopmental disorders such as autism spectrum
disorders (ASD; Kang et al., 2017, 2019; 2020).

Here, I will first review the evidence suggesting a causal role for
microglia in the developmental sculpting of social circuits in the brain.
Next, I will discuss the findings suggesting that the gut microbiome may
causally contribute to the organization of social circuits. Finally, I will
discuss the need for further studies in this arena, as well as the potential
ways in which microglia and microbiota may interact in this context and
new technological advances that extend our ability to ask targeted and
precise questions about the function of microglia and the microbiome.

2. What role do microglia play in shaping social neural circuits?

Microglia are the tissue-resident macrophages of the central nervous
system (CNS) and migrate into the brain prior to the closure of the blood
brain barrier during embryonic development. In addition to responding
to direct insults such as infections and traumatic brain injuries, microglia
participate in healthy brain development via the release of trophic factors
(such as BDNF) and neuromodulators, and by engaging in activity-
dependent synaptic pruning. This has been particularly well character-
ized within the retinogeniculate pathway where microglia have been
shown to influence synaptic formation and elimination via both
complement-dependent and independent mechanisms (Schafer et al.,
2012; Sipe et al., 2016; Cheadle et al., 2020; Hammond et al., 2018).
2

Several studies now suggest that microglia play a role in the devel-
opment of the neural circuits underlying social behavior as well. For
instance, genetic manipulations that affect microglial function, such as
deletion of P2Y12 (a purinergic receptor expressed on homeostatic
microglia in the CNS) alter social behavior. Indeed, chasing behavior and
olfactory investigation towards other conspecifics are decreased in both
male and female P2Y12 knockout mice (Lowery et al., 2021). Similarly,
mice lacking CX3Cr1 have fewer microglia during the perinatal period,
reduced synaptic engulfment, and social behavior impairments (Zhan
et al., 2014). Microglia-specific overexpression of the translation initia-
tion factor eIF4E, which elevates protein synthesis, leads to reduced
synapse engulfment and social behavior deficits in male mice (Xu et al.,
2020). In rats, transient neonatal microglial depletion with liposomal
clodronate induced changes in both adolescent social play behavior and
passive adult social behaviors (Nelson and Lenz, 2017). These findings
suggest that microglial phagocytosis is critical to the organization of the
social brain.

Intriguingly, we recently found that in rats, microglial density, com-
plement component 3 (C3) expression, and dopamine D1 receptor (D1R)
density are all elevated within the nucleus accumbens (NAc; a critical
node in the social reward network) during adolescence (Kopec et al.,
2018). Importantly, social play behavior is also highest during the
adolescent period in rats – declining sharply into adulthood as animals
transition to mature behaviors such as sexual behavior and aggression.
D1R activation within the NAc has previously been shown to facilitate
social reward (Manduca et al., 2016). We found that microglial
complement-mediated phagocytosis is required for the developmental
decline in D1R density that occurs between adolescence and adulthood,
which, in turn, causes the decline in social play behavior (Kopec et al.,
2018). Importantly, these effects were present in males, but not females,
demonstrating sex-specificity of this mechanism. This is in line with work
demonstrating that microglia phagocytose more newborn astrocytes in
the amygdala in males than in females during the neonatal period
(VanRyzin et al., 2019). This increased phagocytosis in males is driven by
testosterone and endocannabinoids and results in higher levels of social
play behavior in males than in females (VanRyzin et al., 2019). These
studies highlight the importance of sex differences in the microglial
sculpting of social circuits. Indeed, it appears that microglial phagocy-
tosis of newborn cells and synaptic elements is potentially a male-specific
phenomenon in the social brain. In keeping with this idea, we recently
showed that a neonatal LPS challenge leads to changes in sociability and
social memory in females but not males (Smith et al., 2020). However,
microglia-specific genetic knock-down of myeloid differentiation
response protein 88 (MyD88; the removal of which prevents LPS from
increasing proinflammatory cytokines such as TNFα and IL-1β) did not
prevent these LPS-induced changes (Smith et al., 2020). Thus, it is
possible that non-microglial mechanisms of circuit organization are more
important in the female brain. Understanding how social circuits are
sculpted in the female brain represents an important avenue for future
investigation.

2.1. How does the gut microbiome influence the social brain?

Changes in the gut-brain axis have been suggested to contribute to the
pathophysiology of many neurological disorders including Alzheimer's’
disease, Parkinson's disease, anxiety, depression, and ASD (for review see
Cryan et al., 2020). Altered social functioning is a characteristic of many
of these disorders, most notably ASD, which is primarily characterized by
deficits in social communication and social interaction (Baio et al.,
2018). Several studies now show that the composition of the gut
microbiome is shifted in individuals with ASD, and that fecal microbiota
transfer (FMT) therapy may have therapeutic potential for alleviating
both gastrointestinal and behavioral symptoms in ASD (Kang et al., 2017,
2019; 2020). Of note, FMT comes with some important risks, such as the
potential transmission of multi-drug resistant bacterial species (U.S. Food
and Drug Administration, 2019). This highlights the importance of
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identifying specific bacterial taxa that might prove efficacious in the
amelioration of ASD symptoms. Together, these findings have spurred a
surge of animal studies in recent years investigating the links between the
gut microbiome and the social brain.

Germ-free mice, which lack microbiota entirely, display social deficits
at baseline, as compared to conventionally housed mice (Desbonnet
et al., 2014; Buffington et al., 2016; Lu et al., 2018). Importantly, colo-
nization of germ-free mice with conventional microbiota at weaning
restores appropriate social behavior in male mice (Desbonnet et al.,
2014). Excitingly, this has also recently been extended to social hierar-
chies. Specifically, dominant and submissive male mice have signifi-
cantly different gut microbiome compositions, with less diversity in
submissive males as compared to dominant males. Fecal microbiota
transplantation from dominant males into germ-free mice increased so-
ciability, while microbiota transplanted from submissive males lead to
reduced social behavior (Agranyoni et al., 2021). Finally, germ-free mice
colonized with microbiota from human patients with ASD display
reduced sociability as compared to those colonized with microbiota from
typically developing children (Sharon et al., 2019).

Gut microbiota have also been shown to causally contribute to social
behavior deficits in mouse models of ASD. In a seminal study, Hsiao et al.
(2013) found that maternal immune activation (MIA) in utero leads to
social behavior impairments (social interaction and social communica-
tion), changes in the composition of the gut microbiome, and greater
intestinal permeability in male offspring. In particular, Bacteroides fragilis
was less abundant in the gut microbiome of offspring exposed to MIA as
compared to control (Hsiao et al., 2013). Supplementation with B. fragilis
restored both social communication deficits and intestinal permeability,
although social interaction itself was not rescued (Hsiao et al., 2013). In
line with this finding, more recent work suggests that the effects of MIA
on offspring social behavior also depend on the presence of segmented
filamentous bacteria (SFB) within the gut microbiome (Kim et al., 2017).

In another line of investigation, Buffington et al. (2016) demonstrated
that maternal high-fat diet (mHFD) during pregnancy induced
autism-relevant social behavior deficits and changes in the gut micro-
biome in offspring. Critically, these deficits could be reversed by
co-housing with naïve cage mates at weaning – a procedure that restores
the composition of the gut microbiome. The authors went on to show that
the bacterial species Lactobacillus reuteri is decreased within the gut
microbiome of mHFD-exposed offspring and that reconstitution with
L. reuteri alone was sufficient to restore oxytocin-mediated neuro-
plasticity with the ventral tegmental area (VTA), as well as social
behavior (Buffington et al., 2016). Building on this study, Sgritta et al.
(2019) found that treatment with L. reuteri also rescues social behavior
deficits in three mouse models of ASD. This rescue also depended on
oxytocin-mediated neuroplasticity in the VTA. Importantly, they further
demonstrated that vagal nerve activation was required to translate these
signals from the gut into neural changes (Sgritta et al., 2019). Finally,
Buffington et al. (2021) found that in Cntnap2�/� mice (which display
decreased sociability and hyperactivity), L. reuteri treatment increased
social behaviors, but did not reduce hyperactivity (Buffington et al.,
2021), demonstrating behavior- and circuit-specificity. The bacterial
species implicated in these studies are all commensal bacteria – typically
beneficial members of a healthy, diverse microbiome. Indeed, the genera
Parabacteroides and Bacteroides (of which B. fragilis is a member) are less
abundant in the gut microbiomes of human individuals with ASD (Sharon
et al., 2019). These finding provide crucial mechanistic evidence that
microbiota are capable of organizing social circuits within the developing
brain.

2.2. Future directions

Several outstanding questions remain in our understanding of how
the gut microbiome and microglia regulate social behavior. Importantly,
the field is only just beginning to uncover the precise molecular mech-
anisms by which microbiota communicate with the brain in the context
3

of social circuits. Studies show that metabolites from the gut microbiome
such as short-chain fatty acids (SCFAs) and vagal nerve activation can act
directly on neural systems such as the oxytocin and dopamine systems in
the brain to change social behavior (Buffington et al., 2016; Sgritta et al.,
2019; Sharon et al., 2019). Importantly, there is also striking evidence
demonstrating that microglial function is shaped by the composition of
the gut microbiome during the perinatal period (Erny et al., 2015; Cas-
tillo-Ruiz et al., 2018; Thion et al., 2018; Luck et al., 2020). Specifically,
Erny et al. (2015) found that adult male and female germ-free mice have
higher densities of microglia in brain regions including the cortex and
cerebellum and that these microglia are hyper-ramified as compared to
specific pathogen free (SPF) mice. The ramification state of microglia is
often taken as an indicator of function with more ameboid (less ramified)
microglia being more pro-inflammatory, although there are limits to
morphology as an indicator of function (Buttini et al., 1996). Moreover,
germ-free microglia were less reactive to an LPS challenge (as assessed by
RNA sequencing), and oral supplementation with SCFA's rescued these
phenotypes (Erny et al., 2015). Interestingly, during early postnatal
development, germ-free mice have fewer or more microglia depending
on the brain region, as well as lower expression of proinflammatory cy-
tokines, and these changes appear to have important functional conse-
quences for processes such as programmed cell death and synapse
remodeling (Castillo-Ruiz et al., 2018; Luck et al., 2020). In an investi-
gation of sex differences in the impact of the gut microbiome on micro-
glia, Thion et al. (2018) used RNA sequencing of isolated microglia from
both conventionally housed mice and germ-free mice. They found that at
embryonic day 18.5, germ-free male, but not female, mice had more
microglia and highly differential microglial gene expression patterns as
compared to controls. In contrast, adult microbiota depletion with anti-
biotics had a greater impact on microglial number and gene expression in
females than in males (Thion et al. (2018). These findings suggest that
there are both direct and microglia-mediated mechanisms by which gut
microbes influence behavior. It is also likely that these mechanisms
depend highly on factors such as sex, age, and experiential history.

Another important future direction will be extending this work to
understand howmicroglia and microbiota sculpt canonical social circuits
in the brain. Indeed, the social behavior neural network (SBNN) has been
well described and extended to comprise a social decision-making neural
network (Newman, 1999; O’Connell and Hofmann, 2012). Moreover,
neuropeptide systems such as the oxytocin and vasopressin systems are
potent regulators of social behavior within these networks and their re-
ceptors and synaptic connections change with sex, age, and develop-
mental exposure to immune challenges and stress (Smith et al., 2019;
Dumais and Veenema, 2016; Raam and Hong, 2021). However, how
microglia and microbiota might contribute to these changes is only just
beginning to be explored. For example, we have previously found that
oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) densities
differ betweenmales and females in brain regions such as the NAc, lateral
septum, and amygdala in rats (Smith et al., 2017, 2017). There are also
substantial decreases in OTR and V1aR, as well as in mu-opioid receptors,
in many of the same brain regions between adolescence and adulthood
(Smith et al., 2017, 2017; Smith et al., 2019). Could microglial phago-
cytosis contribute to these developmental declines? Do shifts in the gut
microbiome following early life insults influence these processes? Inter-
estingly, germ-free male, but not female rats, have higher densities of
OTR in the prefrontal cortex and septum as compared to conventionally
housed rats (Effah et al., 2021). Rodent species such as prairie voles could
also prove to be incredibly useful in these investigations given that they
exhibit complex social behaviors (such as pair bond formation) and that
the social circuits underlying these behaviors have been well character-
ized in voles (Loth and Donaldson, 2021; Walum and Young, 2018).

Finally, a major challenge to drawing causal inferences about the
specific roles of microglia has been the paucity of techniques available to
manipulate their function. Pharmacological agents that block CD11b
function, such as neutrophil inhibitory factor (NIF) or OX-42 clone
CD11b blocking antibodies, have proven to be very useful for allowing



Fig. 2. Mechanisms by which microbiota
and microglia influence social behavior.
A) Work to date suggests that a healthy,
diverse microbiome supports sociability and
social hierarchy formation and that supple-
mentation of the gut microbiome with spe-
cies such as B. fragilis and L. reuteri can
facilitate social behavior. B) The presence of
microglia, as well as their developmental
sculpting of the social circuits in the brain,
supports social behavior. Microglial phago-
cytosis may be more important for social
circuits/behavior in males than in females.
C) Microbiota support the maturation and
function of microglia. More work is needed
to understand the complex interplay between
the gut microbiome and microglial function
in the context of social behavior. Please see
main text for refs. ABX ¼ antibiotic, SCFA ¼
short chain fatty acid. Figure created with
Biorender.com.
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local manipulation of microglial phagocytosis (Kopec et al., 2018; Van-
Ryzin et al., 2019). Another recent development that may prove advan-
tageous is the use of chemogenetic strategies to manipulate microglial
behavior. To date, only four studies have used chemogenetics to
manipulate microglial function and have done so in the context of
neuropathic pain and inflammation (Binning et al., 2020; Saika et al.,
2020, 2021; Yi et al., 2021). Future studies should aim to expand our use
and understanding of this approach in the context of social systems.

3. Conclusion

In closing, both microglia and microbiota are emerging as critical
architects of the neural circuits that support social behavior (Fig. 2).
Future studies should aim to extend these findings to the canonical social
neural networks within the brain, to elucidate the ways in which
microbiota and microglia interact during development, and to clarify the
molecular mechanisms of each with greater spatial and temporal reso-
lution. Furthermore, it is critical that we better understand sex differ-
ences in the developmental organization of the social brain. This is
particularly important given that social impairments are a commonality
across numerous neuropsychiatric disorders, many of which are sex-
biased in their prevalence.
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